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Effect of natural convection in a horizontally oriented cylinder on NMR imaging
of the distribution of diffusivity
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This paper describes the influence of natural convection on NMR measurement of a self-diffusion constant
of fluid in the earth’s magnetic field. To get an estimation of the effect, the Lorenz model of natural convection
in a horizontally oriented cylinder, heated from below, is derived. Since the Lorenz model of natural convec-
tion is derived for the free boundary condition, its validity is of a limited value for the natural no-slip boundary
condition. We point out that even a slight temperature gradient can cause significant misinterpretation of
measurements. The chaotic nature of convection enhances the apparent self-diffusion constant of the liquid.

PACS number~s!: 44.25.1f, 47.27.Te, 92.60.Ek, 87.61.2c
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I. INTRODUCTION

Nuclear magnetic resonance~NMR! pulsed-gradient spin
echo ~PGSE! has long been used to investigate correla
and uncorrelated motion in a number of systems. The eff
of self-diffusion on the NMR signal of liquids have bee
known since the beginnings of NMR~Refs.@1–6#! and since
then, spin-echo measurement of a self-diffusion constant
been a common practice~ @7,1#! and also extensively used i
our lab @8#. Some experiments where diffusivity measur
ment has been combined with magnetic resonance ima
~MRI! to study the distribution of diffusivity have also bee
performed@9–11#. The effect of natural convection on th
measurements is well-known@12,13# and improvements o
measurements have been proposed@14,15#. Natural convec-
tion has recently been investigated with magnetic resona
imaging @16,17#.

In the following paper, natural convection inside a ho
zontally oriented cylinder, heated from below, is inspec
and its effect is evaluated. Natural convection has been t
oughly studied in certain geometries such as plane geom
@18–20# and vertically oriented cylinder@21,22#. Horizon-
tally oriented cylinder is used as a probe for measuremen
self-diffusion constant distribution in the earth’s magne
field on a homemade device as described in@8,10#.

First we describe the signal of a PGSE experiment. T
we simplify fluid-dynamics equations to get the Lore
model @23# of convection. The derivation closely follow
Saltzman’s procedure@24# for plane geometry. The natura
no-slip boundary condition is not fully regarded and the
sulting model is only an approximation of the system. Sin
the boundary temperature is not controlled, the result
model is approximate. It only serves as a tool to estimate
order of the temperature gradient and velocity fluctuatio
In the last section, we show the experimental results
evaluate the conditions and the effect.

II. NMR SPIN ECHO

With the spin echo NMR, a nonuniform magnetic fie
~magnetic field gradient! is used to encode the magnetizati
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for motion by refocusing any spin phase shift of nonmovi
spins. The change of the signal phase at the time of the
echot due to the molecular displacements in the effect
magnetic field gradient G(r ,t) for a spin j,
whose trajectory is given with r j (t), is F(r j ,t)
5g*0

tG(r j ,t)•r j (t)dt5*0
tF(r ,t)•vj (r ,t)dt. Here F(r ,t)

5g*0
t G(r ,t8)dt8 is zero at the time of refocusingt. vj is the

velocity of the spin-bearing particle. The magnetic field g
dient can be written asG(r ,t)5gt(t)gr(r ). The scalar func-
tion gt describes the gradient time variation and the vec
functiongr , its spatial dependence¹uB(r )u. The word effec-
tive signifies the change in sign ofgt whenever ap rf pulse
is applied to the system. The effective time dependencegt of
the gradient field for a typical PGSE experiment is shown
Fig. 1. Since the detected signal arises fro
the induction of an immense number of spins (@106), one
does not detect the frequency fluctuations of an individ
spin but rather a coherent superposition of signals induced
a large number of spins. The detected spin-echo signal
picture element positioned atr in an MR image can be writ-
ten as

E~r ,t!5(
j

eiF(r j ,t)5n^eiF(r ,t)&5E0eif(r )2b(r ), ~1!

where the sum encloses then spins of the fluid parcel within

FIG. 1. The time dependencegt(t) of the magnetic field gradi-
ent in a typical PGSE experiment. The gradient pulses ared long
andD apart. Spin-echo forms at timet.
6628 ©2000 The American Physical Society
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PRE 62 6629EFFECT OF NATURAL CONVECTION INA . . .
the picture element. The sum can be evaluated with an
semble averagê•••& over the trajectories of different spin
contributing to the picture element.E0 is the normalized am-
plitude. The phase shift due to the net flow is

f~r ,t!5E
0

t

F~r ,t !•^v~r ,t !&dt, ~2!

while the signal attenuation is

b~r ,t!5E
0

tE
0

t

F~r ,t1!•^]v~r ,t1!]v~r ,t2!&F~r ,t2!dt1dt2 ,

~3!

if the velocity fluctuation]v5v2^v& is considered a vari-
able of the Gaussian stochastic process. This allows the t
cation of the cumulant expansion to the second order w
used for the phase averaging@8#. Therefore the process i
defined only by the variancê]v(t)]v(0)&, i.e., the velocity
correlation function. In the case of the molecular therm
motion an immense number of spins, each experienc
weak phase fluctuations, adds to the induction in the de
tion coil. This assures that the spin-echo phase fluctua
can be treated as a Gaussian process. But for the velo
variation of a nonstationary or turbulent flow, the associa
spin phase fluctuations may in general not justify the trun
tion of higher terms in the cumulant expansion. With
appropriate selection of timing and intervals of the sig
acquisition with respect to the speed and pace of the fl
one can enhance the Gaussian assumption to allow the u
Eq. ~3! for the flow fluctuation as well. Namely, in the cas
of thermal convection, slow flowvC is superposed on fas
molecular Brownian motionvm . The average velocity o
Brownian motion iŝ vm&50 and this motion does not con
tribute to the phasef of the signal. Almost stationary flow
vC effects only the signal phase but not the amplitude in
~1! during the short interval of motion encoding and ec
acquisition. With the NMR in the earth’s magnetic field, t
signal averaging for noise reduction is performed. The du
tion of each gradient sequencet is limited by the spin relax-
ation and can rarely be longer than a few seconds. Thu
change of the convection flow velocityvC , that can occur
within each signal acquisition, is small but the velocity c
be different for every frame of acquisition and so can
phase shiftsf. Subsequent addition of different frame
needed to reduce the noise, weakens the signal from e
parcel of fluid and thus the intensity of a corresponding p
ture element by a factore2bC, where

bC~r !5
1

2N (
n51

N S fn
2~r !2

1

N (
m51

N

fm~r !fn~r !D . ~4!

Here N is the number of frames added in the averag
process, andfn is the phase accumulated in thenth frame.
In the limit of many accumulations,bC gets the form of
Eq. ~3!, where the velocity variation of the pixel embrac
both the molecular motion and the convection flow fluctu
tions,

]v~r !5]vm~r !1]vC~r !. ~5!
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Whenever one can neglect the mutual correlation betw
the flow and the molecular motion, the contribution of bo
to the spin-echo attenuation can be divided. For Brown
diffusion the velocity correlation time is short compared
the interval of acquisitiontmc!t, allowing us to assume the
velocity fluctuation along the applied magnetic field gradie
as ^]vmg(t)]vmg(0)&52Dd(t). This provides the spin-echo
attenuation from Eq.~3! as

bm~r ,t!5DE
0

t

F2~r ,t !dt ~6!

with D being the self-diffusion constant. The attenuationbm
does not depend on the position of the pixelr , if a uniform
gradient is applied to a homogeneous sample. For slow
locity variations of nonstationary convection with respect
the duration of the acquisitiontCc@t, the resulting attenua
tion follows from Eq.~4! and the definition of the phase Eq
~2!:

bC~r !5
1

2N2 (
m

(
n
E

0

tE
0

t

F~r ,m]t1t1!]vC~r ,m]t1t1!

3]vC~r ,n]t1t2!F~r ,n]t1t2!dt1dt2 . ~7!

]t is the time between two successive acquisitions. SincF
is periodic @F(m]t1t)5F(t)# with the period]t and the
change of the velocity]vC during the time of the acquisition
is small we can further express the attenuation as

bc5
1

2N2 (
m

(
n

]vg~m]t !]vg~n]t !F E
0

t

F~ t !dtG2

5
1

2
^]vg

2&CF E
0

t

F~ t !dtG2

. ~8!

In the last step we have replaced the sum with an inte
(→*dt/]t. The projection of the velocity on the direction o
the gradient is denoted with the subscriptg. Here^]vg

2&C is
the mean squared velocity fluctuation of the flow projec
on the direction of the magnetic field gradient at the locat
of the picture elementr and is defined as

^]vg
2&C5

1

N2 (
m

(
n

]vg~m]t !]vg~n]t !

5
1

tm
2 E0

tmE
0

tm
]vg~ t8!]vg~ t9!dt8dt9, ~9!

where the time of the measurement istm5N]t. Note that the
average is taken over a much longer timetm ~several min-
utes! in ^•••&C then in^•••& ~less then a second! average for
a single acquisition.

For a usual PGSE sequence with the gradient pulse w
d and the interspacingD, the total attenuation of the pixel i
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b~r !5bm~r !1bC~r !

5„gG~r !d…2D~r !S D2
d

3D1
1

2
„gG~r !dD…

2^]vg
2~r !&C .

~10!

If the convective velocity fieldvC can be separated int
a dimensionless time-dependent parta(t) and a
space-dependent part asvC(r ,t)5a(t)vr(r ) and if we
consider the gradient as the product of its spatialgr and
temporalgt part, then the convective attenuationbC Eq. ~7!
becomes

bC~r !5
g2

2N2 (
m

(
n
E

0

tE
0

tE
0

m]t1t1
gt~ t8!dt8

3gr~r !•vr~r !]a~m]t1t1!]a~n]t1t2!

3vr~r !•gr~r !E
0

n]t1t2
gt~ t9!dt9dt1dt2 . ~11!

This lengthy expression simplifies for a PGSE experim
~Fig. 1! into

bC~r !5
1

2
~gDd!2^]a2&C„gr~r !•vr~r !…2. ~12!

Equation ~12! shows explicitly the spatial dependence
the attenuation factor. It is given with a projection of th
velocity on the magnetic gradient field. The strength
the attenuation, for fixed parametersd, D, t, and gradient
strength, is related to the time variation of the convect
velocity. In this way, one can see that the spatial depende
of the attenuation factorbC is determined by the spatia
velocity profile ~or vice versa! and the magnitude ofbC re-
veals the time fluctuations of nonstationary macrosco
flows.

The attenuation of the gradient spin-echo, in addition
the molecular self-diffusion, may comprise the informati
about fluctuations in nonstationary macroscopic flows. T
the preparation of measurements and the interpretatio
data requires all due precaution.

The approach to the evaluation of the effect of a nons
tionary flow on the spin-echo is equivalent to the one use
the study of granular flow made by Seymouret al. @9#.

Now our goal is to find the velocity profile and the tim
variation of its magnitude for the natural convection in
horizontal cylinder in order to estimate its effect on the sp
echo attenuation. To do so, we have to solve a nonlin
system of equations and simplify it to the lowest possi
terms to get the Lorenz system of equations.

III. FREE CONVECTION

The three equations describing incompressible fluid
gravity force fieldg, are Navier-Stokes equation, heat co
duction equation, and continuity equation@20#:

]v

]t
1~v•“ !v52

1

r
¹p1n¹2v1g, ~13a!
t

f

e
ce

ic

o

s
of

-
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-
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e

n
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]T

]t
1v•“T5x¹2T, ~13b!

“•v50. ~13c!

Herev, g, p, T, r, n, andx are, respectively, velocity profile
gravitational acceleration, pressure, temperature, den
kinematic-viscosity, and thermometric-conductivity~or ther-
mal diffusivity! of the liquid.

In what follows, the fluid is assumed incompressible a
we will make the Boussinesq approximation@25#—the only
temperature-dependent quantity is density:

r5r0~12bT8!. ~14!

Here r0 is the density of the liquid at the point where th
temperature isT0 , b is thermal-expansion coefficientb5
2(1/r)]r/]T, andT8 is the temperature deviation fromT0.
The pressurep is

p5r0g•r1p81const ~15!

andp8 is considered small. The first term on the right side
Eq. ~13a! can be written to the first order as

¹p

r
5g1

¹p8

r0
1gT8b ~16!

and thus Eq.~13a! becomes

]v

]t
1~v•“ !v52¹S p8

r D1n¹2v2bT8g. ~17!

We will describe the convection in a horizontally oriente
cylinder with the diameterd52R. The geometry is shown in
Fig. 2. In accordance with Lorenz derivation and to simpl
the calculations, it is assumed that the system is translat
ally invariant along the symmetry axis of the cylinder~de-
noted in Fig. 2 byz), so that convection rolls extend t
infinity. The temperature at the edge of the cylinder is

FIG. 2. The geometry of the sample:z axis is perpendicular to
the plane of the paper and coincides with the symmetry axis of
cylinder. The vertical axisx ~unit vectorn! is antiparallel to gravi-
tational acceleration. The temperature at the bottom of the circ
ference isDT higher than the temperatureT0 at the top and is
assumed to fall linearly from the bottom to the top.B0 denotes
earth’s magnetic field, which is on site inclined by 30° from t
vertical.
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PRE 62 6631EFFECT OF NATURAL CONVECTION INA . . .
sumed to fall linearly from the bottom to the top of th
circumference and, written in cylindrical coordinates, is

T~r ,w,t !5T01
1

2
DTS 12

r

R
cosw D . ~18!

DT is the temperature difference between the bottom and
top of the cylinder~Fig. 2!.

The continuity equation~13c! is automatically fulfilled, if
we introduce a stream functionc such that

v r52
1

r

]c

]w
, vw5

]c

]r
. ~19!

In the next step we introduce the deviationu(r ,w,t) from
the linear temperature profile via

T~r ,w,t !5T01
1

2
DTS 12

r•n

R D1u~r ,w,t !. ~20!

Here n denotes a unit vector antiparallel to the direction
gravitational acceleration and signifies the axis from wh
the polar anglew is measured.

We get rid of the pressure term in the Navier-Stokes eq
tion by applying the curl to both sides of the equation. F
ther, we replace the velocity and the temperature field
Eqs.~19! and ~20!, and we get the equations

]u

]t
52

1

r

]~c,u!

]~r ,w!
1x¹2u

1
DT

2R S 2
]c

]r
sinw2

1

r

]c

]w
cosw D , ~21!

]¹2c

]t
52

1

r

]~c,¹2c!

]~r ,w!
1n¹2~¹2c!

1gbS 2
]u

]r
sinw2

1

r

]u

]w
cosw D , ~22!

with the notation ](a,b)/](r ,w)5(]a/]r )(]b/]w)
2(]a/]w)(]b/]r ).

In order to simplify this system of equations, we impose
free boundary condition for the velocity and assume a l
right symmetry for the velocity profile

]c

]w U
R

50, c~r ,R!,`,

c~2w!52c~w!, c~w1 integer32p!5c~w!. ~23!

By assuming a free boundary condition, we limit ourselv
to the space outside some boundary layer@20#. The thickness
of the layer is approximately given byh;An l /v0, wherev0
is the velocity outside the layer andl is its length. Following
the definition ofu, the quantity is zero at the boundary an
the angle symmetry is obvious for the presumed veloc
symmetry:

u~R,w,t !50, u~r ,R!,`,
~24!

u~2w!5u~w!, u~w1 integer32p!5u~w!.
e

f
h
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-
y

a
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y

Equations~21! and~22!, with boundary conditions Eqs.~23!
and ~24! can be solved with a series expansion in a suita
orthonormal system—in this case the product of cylindri
Bessel and harmonical functions:

c~r ,w,t !5x(
nm

anm~ t !Jn~jnmr /R!sinnw, ~25!

where jnm is the mth zero of the nth Bessel function
Jn . Likewise, we can write down the temperature deviati
as

u~r ,w,t !5
DT

Ry
(
nm

bnm~ t !Jn~jnmr /R!cosnw. ~26!

The coefficients in the series expansion are

anm~ t !5
2

xp J̇n
2~jnm!

3E
2p

p

dwE
0

R

drrc~r ,w,t !Jn~jnmr /R!sinnw

~27!

and

bnm~ t !5
Ry

DTp J̇n
2~jnm!

3E
2p

p

dwE
0

R

drru~r ,w,t !Jn~jnmr /R!cosnw.

~28!

Since we are interested only in the first approximation
motion, we choose to keep only the first terms in the se
expansion:

c~r ,w,t !5xa11~ t !J1~j11r /R!sinw, ~29!

Ry

DT
u~r ,w,t !5b02~ t !J0~j02r /R!1b11~ t !J1~j11r /R!cosw.

~30!

Ry is a control parameter known as the Rayleigh numbe

Ry5
bgDTd3

nx
. ~31!

The term withJ0(j01r /R) is omitted because of the defin
tion of temperature deviation~the average should be zero!.
If we would choose to keep more terms in the expans
of c, a realistic no-slip boundary condition could be sat
fied, but the solution is then too complicated to be physica
tractable and even the approximations made~longitudinal
symmetry, Bousinesq approximation, and boundary temp
ture profile! are then questionable. By numerically solvin
the equations and comparing the solutions it was obser
that the solution for the no-slip boundary condition requir
more than two terms to be equivalent to the one te
free boundary solution with the no-slip boundary conditi
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FIG. 3. Velocity profile in the first approximation in a horizon
tally oriented cylinder heated from below. In this particular imag
fluid is rising in the middle and descending at the edge. With a f
boundary condition, the velocity at the boundary remains fin
whereas in a real case it vanishes.
accounted for with a boundary layer. So complicat
solutions are outside the scope of this work especially
cause the first-order approximation gives the solution o
correct order.

With the expressions for the stream function and tempe
ture deviation@Eqs.~29! and~30!# we get a nonlinear Lorenz
system of equations:

b028 5c2a11b112j02
2 b022Ryc1a11, ~32a!

b118 52c3a11b022j11
2 b11, ~32b!

a118 52sj11
2 a112sc4b02, ~32c!

where the prime denotes the derivative with respect to
normalized timeq5(x/R2)t. Dimensionless parameters
5n/x, and numerical constants are

c15

j11E
0

1

J0~j11x!J0~j02x!xdx

4E
0

1

J0
2~j02x!xdx

'0.80,

,
e
e

.
ss
the
FIG. 4. Amplitude of velocitya11 as a function of normalized timet for some arbitrary initial condition~in this casea1150,b11

50,b0251) and for different values of control parameterRy . The valuea1151 corresponds to the velocityv5131026 m/s at the center
of the cylinder andq51 corresponds to 3.53104 s. ~a! Small Ry corresponds to small temperature differenceDT. The liquid is stable and
no convection occurs. The only heat transfer is through heat conduction.~b! For values ofRy larger than 2.53104, natural convection arises
The flow becomes stationary after a few oscillations.~c! With Ry approaching the value 3.13105, the oscillations become less and le
dampened until they finally escalate and the motion becomes chaotic.~d! Chaotic natural convection. For control parameter shown,
changes ina11 are on the order of 102 in normalized time span of the order 1023. The temperature difference in this case isDT50.01 K.
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c25

j11E
0

1

J18~j11x!J1~j11x!J0~j02x!dx

2E
0

1

J0
2~j02x!xdx

'2.6,

c35j02

E
0

1

J1~j02x!J1~j11x!J1~j11x!dx

E
0

1

J1
2~j11x!xdx

'3.8,

c45

j02E
0

1

J1~j02x!J1~j11x!xdx

8j11
2 E

0

1

J1
2~j11x!xdx

'0.019.

The quantity of interest is the velocity associated w
a11. The liquid studied here is water at 20 °C withs56.3,
x51.431027 m2/s, n5931027 m2/s, andb52.231024/
K. In this case it follows that the valuea1151 corresponds to
the velocityv5131026 m/s at the center of the cylinde
The valueq51 gives timet53.53104 s. The system@Eqs.
~32!# was solved numerically with a nonstiff implicit Adam
algorithm with order between 1 and 12 or stiff Gear bac
ward difference formula method with order between 1 an
depending on the convergence of the solutions@26#. The ve-
locity profile is shown in Fig. 3 and the amplitude of th
velocity in the center of the cylinder, for different values
control parameterRy , is shown in Fig. 4. One can see in Fi

4~a! that for small values ofRy the liquid is stable and no
convection occurs. For Rayleigh numbers larger than 2
3104 the convection appears that becomes stationary afte
while @Fig. 4~b!#. Only at even greater values of the contro

was
-
5

.5
r a
l

parameter@Ry53.13105, Fig. 4~c!# the convection become
chaotic, yet the period is somewhat fixed and varies withRy .
A deeper understanding of the nature of bifurcations can
found in Ref.@27#.

IV. EXPERIMENT

The experiment is described in details in Ref.@10#. It is a
basic PGSE experiment combined with spin-warp imaging
reveal the space distribution of the self-diffusion constant
water in a 0.2-m-diameter tube. The scheme for magn
fields of a single frame in the experiment is shown in Fig.
The acquisition in one frame of the measurement takes
proximately 0.5 s and is repeated after 6 s. The magnet
tion field is needed because the experiment is performed
relatively weak earth’s magnetic field. The magnetization
turned on for 3 s to allow a sufficient relaxation time. The
idle time of 3.5 s in the frame is required because of the d
cycle of the magnetization amplifier. The probe is inside
receiving coil with its diameter 1 cm larger than the sam
cylinder. The symmetry axes of the probe and the rece
coil are parallel and perpendicular to the magnetic field. T
cylinder is touching the coil at the bottom with an air gap
the top. The probe is neither isolated nor thermally sta
lized. The magnetization coil can heat up to 50 °C, depe
ing on the external condition~air temperature, draft!. As our
model and the following discussion show, even a small te
perature variation can induce thermal convection. The c
dition that the convection be absent for water is about o
degree per 6.7 km@20#. As mentioned before, velocity fluc
tuations induced by convection cause additional attenua
of the signal from each picture element comprising the i
age. The magnetic field gradient used in the experiment
of the form

gr5¹u„~Gz1B0!cos 30°,~Gz1B0!sin 30°,
aging

dient
g sequence.
symmetry
e

FIG. 5. Magnetic fields in PGSE measurement of self-diffusion. The distribution of diffusivity is examined with a spin-warp 2D im
technique. The magnetization field magnitizes the sample, thus enhancing the signal. The rf field first excites spins with ap/2 pulse and then
inverts their phase at timet/2 as is customary in PGSE.p pulse is also a part of the spin-warp imaging sequence. The attenuation gra
causes the attenuation of the spin echo and is in our case perpendicular to the phase and read gradients of the spin-warp imagin
The phase and read gradients produce a 2D image of a projection of distribution of spins on a plane perpendicular to the cylinder
axis. The time axis indicates the time of the spin echot, length of gradient pulsesd, and their separationD. Times are shown in appropriat
ratio. The timed used in our measurements was varied between 0 and 300 ms.
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G~x cos 30°2y sin 30°!…u, ~33!

with the amplitudeG51.831023 T/m. At a first glimpse,
the expression for the gradient field may appear a bit co
plicated. This is because the field is of quadrupolar form a
aligned along the direction of earth’s magnetic field, which
inclined by 30° from the vertical axisn. The direction of the
earth’s magnetic field also defines the vertical axis of M
images shown here.

A series of images was taken for different lengthsd of
gradient pulses~Fig. 6!. One can observe that, aside from t
uniform attenuation brought about by self-diffusion, there
also additional attenuation in the form of dark patches.
can explain these patches with the convection pattern g
by Eq. ~19!, evaluated with the stream function of Eq.~29!
and a boundary layer accounted with (12e2(12r /R)h/R), and
the attenuation form of Eq.~10!. The boundary layer thick-
ness ish and the velocity near the wall falls to zero linear
with the distance from the wall. Figure 7 shows the M

FIG. 6. PGSE MR image of a cross section of a cylinder, sho
ing the space distribution of self-diffusion constant.~a! Image of
spin density withG set to zero.~b! Image of diffusivity with gra-
dient pulses ofd length and strength ofG51.831023 T/m. The
patches at the top and the bottom of the cross section are caus
natural convection.

FIG. 7. Attenuation caused by convection. Shown is the ex
nent of the square of the scalar product of gradient field and ve
ity field @given in Eq. ~12!# for variance of velocity fluctuation
given by Eq.~34!. The velocity field of Eq.~19! is modified in such
a way that velocity vanishes at the boundary.
-
d
s

s
e
n

image predicted with this velocity field (h51 cm) and with
the same parameters as were used in the experiment.

According to Eq.~4!, we infer from the attenuation o
pixels on the MR image~Fig. 6! that the velocity changes
between different frames should be on the order of

]vC'
3

gDdG0.5
'0.1 mm/s, ~34!

where two adjacent frames are separated by]t. The factor
0.5 is the product of maximal value ofJ1(j11x) and cos 30°;
in our case the repetition time]t56s. This corresponds to
the normalized time span of]q5131024. The velocity
fluctuations of 0.1 mm/s signify the variation of]a1151
3102. Such velocity fluctuations are represented in Fig. 4~d!,
which corresponds to a Rayleigh number of 1.43106.
In our case this means a temperature differenceDT50.02
60.01 K.

The temperature difference between the bottom and
top of the circumference was also measured with an arra
thermocouples. The time diagram ofDT is shown in Fig. 8.
The temperature difference fluctuates by 0.01 K around
average of 0.05 K on a time scale of a few seconds w
occasional jumps that are not correlated with the meas
ment but should be contributed to the external disturban
The temperature is measured on the outer side of the cylin
walls. We estimate that the temperature inside the cylinde
only slightly smaller~a few percent! since the walls are thin
~less than 1 mm!.

V. CONCLUSION

The measurements of the self-diffusion constant w
NMR PGSE, although well-established, still need to
evaluated cautiously. If we would not make an image of
sample we would not be able to see the effect of natu
convection and we would misleadingly overestimate the s
diffusion constant of the liquid. However, the effect, und
the conditions described herein, is not very strong a
is observable only in the limit of strong and long gradie
pulses. In fact, the flow is so slow that the measurem
of the velocity with NMR is virtually impossible. To get a
measurable signal dephasing from the convective flow
strong gradient needs to be applied for a long tim
~compared to relaxation!. The signal of such measureme

-

by

-
c-

FIG. 8. The time diagram of the temperature differenceDT
between the bottom and the top of the cylinder circumference.
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is so noisy that averaging is needed. But, when the fl
is not steady, the averaging additionally attenuates
signal, which could be misinterpreted as an enhanced s
diffusion.

Of course the above given calculations are only the cr
est estimation of what takes place in the probe. Also, ther
takenboundary conditions are not as well-defined as w
e

a

o

on
w
e
lf-

-
al
re

here to be. The fact that the measured temperature differe
is somewhat higher than predicted is understandable s
the prediction is based on the convection with the fr
boundary conditions. This work should not be understood
a new technique of measuring the Rayleigh number but a
demonstration of the influence of a nonsteady flow on
averaging of the spin-echo signal.
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